2005 Vol. 7, No. 7 1395–1398

Synthesis and Stereoselective Glycosylation of D- and L-glycero-β-D-manno-Heptopyranoses

David Crich* and Abhisek Banerjee

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061

dcrich@uic.edu

Received February 2, 2005

ABSTRACT

A method for the direct stereocontrolled synthesis of D- and L-glycero-β-D-manno-heptopyranosides such as those found in the repeating unit of the O-specific polysaccharide from the CNCTC 113/92 LPS (serotype 54) is described. The method relies on the presence of a 4,6-O-benzylidene acetal to effect stereocontrol at the anomeric center; the configuration at C6 (L- or D-glycero) is of minimal importance.

Well-defined syntheses of complex oligosaccharides and glycoconjugates corresponding to native bacterial structures are essential tools for investigation of the immunological response against polysaccharides. Heptoses of the L-glycero-D-manno and D-glycero-D-manno configurations are common constituents of the inner and outer core regions of lipopolysaccharides (LPS) and are found in many pathogenic bacteria. The synthesis of higher carbon sugars has been investigated for more than a century, and several methods have been developed; however, less attention has been devoted to their stereocontrolled incorporation into glycosidic bonds. Most LPS heptosides have the α -anomeric configuration, and syntheses of several complex oligosaccharides containing α -L,D- or α -D,D-heptopyranosides (Hepp) have been achieved by Oscarson and co-workers.

The structure of the core LPS from *Plesimonas shigel-loides* O54 (strain CNCTC 113/92) was recently elucidated

by a combination of 1 H and 13 C NMR spectroscopy, mass spectrometry, monosaccharide analysis, and immunological methods. Interestingly, the O-specific polysaccharide of this strain was found to be composed of a hexasaccharide repeating unit (Figure 1) containing two unusual β -linked

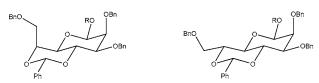
Figure 1. Repeating unit of the O-specific polysaccharide from CNCTC 113/92 LPS (serotype 54).

heptose units. The presence of the two β -linkages in this immunological lipopolysaccharide prompted the investigation

⁽¹⁾ Oscarson, S. Carbohydr. Polym. 2001, 44, 305.

⁽²⁾ Zamyatina, A.; Gronow, S.; Puchberger, M.; Graziani, A.; Hofinger, A.; Kosma, P. *Carbohydr. Res.* **2003**, *338*, 2571.

⁽³⁾ Györgydeák, Z.; Pelyvás, I. F. Monosaccharide Sugars—Chemical Synthesis by Chain Elongation, Degradation and Epimerization; Academic Press: San Diego, 1998.


^{(4) (}a) Brimacombe, J. S.; Kabir, A. B. K. M. S. *Carbohydr. Res.* **1986**, *152*, 329 and references therein. (b) Boons, G. J. P. H.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron Lett.* **1989**, *30*, 229. (c) Jørgensen, M.; Iversen, E. H.; Madsen, R. *J. Org. Chem.* **2001**, *66*, 4625 and references therein. (d) Read, J. A.; Ahmed, R. A.; Morrison, J. P.; Coleman, W. G., Jr.; Tanner, M. E. *J. Am. Chem. Soc.* **2004**, *126*, 8878.

^{(5) (}a) Oscarson, S.; Ritzen, H. Carbohydr. Res. 1994, 254, 81. (b) Ekeloef, K.; Oscarson, S. J. Carbohydr. Chem. 1995, 14, 299. (c) Bernlind, C.; Oscarson, S. Carbohydr. Res. 1997, 297, 251. (d) Bernlind, C.; Oscarson, S. J. Org. Chem. 1998, 63, 7780. (e) Bernlind, C.; Bennett, S.; Oscarson, S. Tetrahedron: Asymmetry 2000, 11, 481. (f) Segerstedt, E.; Manerstedt, K.; Johansson, M.; Oscarson, S. J. Carbohydr. Chem. 2004, 23, 443.

^{(6) (}a) Niedziela, T.; Lukasiewicz, J.; Jachymek, W.; Dzieciatkowska, M.; Lugowski, C.; Kenne, L. *J. Biol. Chem.* **2002**, 277, 11653. (b) Czaja, J.; Jachymek, W.; Niedziela, T.; Lugowski, C.; Aldova, E.; Kenne, L. *Eur. J. Biochem.* **2000**, 267, 1672.

which we now report into stereocontrolled β -glycosidation in D,D-heptoses and the related L,D-epimers.

Our interest in these molecules was further spurred by the insight that their study might yield into the underlying reasons for the beneficial influence of the 4,6-O-benzylidene acetal on the stereocontrolled preparation of β -mannosides.⁷ Originally, working in the gluco series, Fraser-Reid and coworkers suggested that trans-fused 4,6-O-benzylidene protecting groups restrict the flexibility of the pyranose ring, resulting in an oxacarbenium ion intermediate with a computed (PM3) 20° twist in the ideally syn coplanar C5-O5-C1-C2 system. 8a In a subsequent paper, differential solvation was also computed to be of significance in these so-called torsional disarming effects.8b More recently, Bols and coworkers provided experimental evidence in support of the notion that the disarming effect of the 4,6-O-acetal group is mainly due to the locking of the C5-C6 bond in the deactivated tg-conformation.9 We hypothesized that the inclusion of either an extra axial C-6 substituent, as in the 4,6-O-benzylidene-protected L-glycero-D-manno-heptoses, or a corresponding equatorial substituent, as in the D-glycero-D-manno series, would influence both torsional and solvation considerations differently, whereas the tg conformation of the C5-C6 bond would be unchanged. Comparisons of either reactivity or stereoselectivity between the two diastereomeric series might therefore provide support for one or other of the two conflicting rationales for the 4,6-O-benzylidene group effect.

4,6-O-benzylidene protected β -Lglycero-D-manno-heptopranoside

4,6-O-benzylidene protected β-Dglycero-D-manno-heptopranoside

Figure 2. L- and D-glycero-D-manno-heptopyranosides.

The synthesis of a diastereomeric glycosyl donor pair (Scheme 1) began with the known 4,6-*O-p*-methoxybenzylidene-protected thiomannoside **1**,¹⁰ which was regioselectively opened to the primary alcohol **2** exclusively in 90% yield with DIBAL-H in dichloromethane.¹¹ Comparable results were obtained with scandium triflate-catalyzed, BH₃— THF-mediated reduction;¹² all other standard protocols¹³ gave mixtures of isomers and considerable cleavage of the acidlabile *p*-methoxybenzyl group. Swern oxidation¹⁴ of **2** gave

the corresponding unstable¹⁵ aldehyde, which was carried on to the next step, Wittig olefination,¹⁴ without purification.

The yield (65%) of the olefination product 3 was compromised by the concomitant formation of diene 4 in 14% yield.¹⁶ Use of the Nysted reagent¹⁷ for this transformation also generated compound 4, along with compound 3, however, in higher yield, whereas the Petasis reagent¹⁸ gave predominantly decomposition products. Treatment of olefin 3 with OsO₄ (5 mol %) and NMNO at 0 °C and room temperature furnished diols 5 and 6 in 5:1 and 3:1 diastereomeric ratios and in 79 and 81% yields, respectively. The stereochemical outcome of this dihydroxylation follows Kishi's empirical rule;¹⁹ the relatively poor diastereoselectivity starting from the sugar with 2,3-erythro configuration is also consistent with literature precedent.4c Asymmetric dihydroxylation was also unsatisfactory for this transformation in our hands. 15,20 Silylation of 5 gave the primary silyl ether 7, which, when subjected to the Mitsunobu protocol, 15 afforded the inverted ester 8. Removal of the ester function then gave more significant quantities of the L,D-series in the form of the silyl ether 9 (Scheme 2).

Scheme 2. Inversion of Configuration at C6

OX

$$OSC$$
 OSC
 O

Compound **7** was converted uneventfully to the D-*glycero*-D-*manno*-heptothioglycoside **10** by oxidative ring closure with DDQ in 84% yield (Scheme 3).²¹

In the diasteromeric series, however, cyclization of silyl ether **9** was comparatively slow due to the developing 1,3-

1396 Org. Lett., Vol. 7, No. 7, 2005

^{(7) (}a) Crich, D.; Smith, M. J. Am. Chem. Soc. **2001**, 123, 9051. (b) Crich, D.; Lim, L. B. L. Org. React. **2004**, 64, 115.

^{(8) (}a) Fraser-Reid, B.; Wu, Z.; Andrews, C. W.; Skowronski, E.; Bowen, J. P. J. Am. Chem. Soc. **1991**, 113, 1434. (b) Andrews, C. W.; Rodebaugh, R. Fraser-Reid, B. J. Org. Chem. **1996**, 61, 5280.

⁽⁹⁾ Jensen, H. H.; Nordstrøm, L. U.; Bols, M. J. Am. Chem. Soc. 2004, 126, 9205.

⁽¹⁰⁾ Crich, D.; Li, W.; Li, H. J. Am. Chem. Soc. 2004, 126, 15081.

^{(11) (}a) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. *Chem. Lett.* **1983**, 1593. (b) Mikami, T.; Asano, H.; Mitsunobu, O. *Chem. Lett.* **1987**, 2033

⁽¹²⁾ Wang, C.-C.; Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. *Org. Lett.* **2002**, *4*, 847. Note: This method gave 84% yield but generated more diol compared to the DIBAL-H reaction.

diaxial interaction in the acetal ring. As a consequence, oxidative cleavage of the PMB group was a competing reaction, resulting in the formation of diol **12** in 48% yield along with the desired L-*glycero*-D-*manno*-heptothioglycoside **11** in 43% yield. In the face of this difficulty, a protocol was devised whereby the crude reaction mixture from treatment of **9** with DDQ was treated with *p*-methoxybenzylaldehyde dimethyl acetal and catalytic CSA to give **11** in 80% yield over two steps (Scheme 3).

At this stage, the NOE correlations indicated in Figure 3 served to confirm both the configuration at C6 in compounds **10** and **11**, as well as the equatorial nature of the *p*-methoxyphenyl group in the two acetals.

Figure 3. Diagnostic NOE correlations for donors 10 and 11.

A series of glycosylation reactions were then conducted with donors **10** and **11** with thioglycoside activation by means of 1-benzenesulfinyl piperidine and trifluoromethanesulfonic anhydride (BSP/Tf₂O)^{7a} in the presence of the hindered base 2,4,6-tri-*tert*-butylpyrimidine (TTBP)²² in dichloromethane at -60 °C prior to the addition of the acceptor alcohols (Scheme 4).

All couplings were highly β -selective and proceeded in high yields (Table 1). A minor exception to the otherwise

Table 1. Diastereoselective Glycosidation Reactions

entry	donor	acceptor	product	% yield (β:α ratio)
1	PMP O O OBn BnO SPh	OBn HO Q	PMP O O O O O O O O O O O O O O O O O O	81 (1:0)
2	PMP O OTBDPS OBn OBn SPh	BnO BnO Me	PMP O OBN OBN OBN OBN OBN OBN OBN OBN OBN O	86 (8:1)
3	PMP OTBDPS BnO SPh	ОМе	OTBDPS OMe OBn OTBDPS OTBDPS	88 (1:0)
4	PMP O OBn OBn SPh	14	PMP OBN OMe	85 (1:0)
5	PMP O O OBn BnO SPh	HO 15	PMP O OBD BnO 21	88 (1:0)
6	PMP O OBn BnO SPh	HO_NHCO ₂ Bn CO ₂ Me	OTBDPS OBn OBn ONHCO ₂ Bn CO ₂ Me	89 (1:0)

Org. Lett., Vol. 7, No. 7, 2005

exclusive β -selectivity was observed in the coupling of donor 11 to the glucose-4-OH acceptor 13 (Table 1, entry 2). This may represent a small difference in reactivity between the two donors, which only becomes apparent with less reactive acceptors such as 13. 23 The assignment of anomeric stereochemistry in all glycosides was made on the basis of $^{1}J_{\text{CH}}$ coupling constants. 24 Furthermore, in all products arising from donors 10 and 11, a relatively upfield chemical shift (δ 3.25 to 3.50 in CDCl₃) of the heptose H5 resonance was observed, as is characteristic of 4,6-O-benzylidene-protected β -mannosides. 25

Finally, attention was turned to deprotection (Table 2). Thus, glycosides 17, 18β , and 19 were first exposed to TBAF in THF. This was followed by benzylidene acetal and acet-

Table 2.	Final Deprotections		
cmpd	partial deprotection	final product	
-	(% yield) ^a	(% yield) ^b	
17	HO OBN OBN OBN OBN OBN OBN OBN OBN OBN OB	HOWN OH OH OH HO OH HO OH OH OH OH OH OH OH	
18β	OH OBn HO BnO BnO BnO BnO OMe	HO OH OH OH HO OH OH OH OH OH OH OH OH O	
19	OH OMe	OH OMe	

^a Treatment with TBAF in THF followed by camphorsulfonic acid in methanol, both at room temperature. ^b Hydrogenolysis over Pd/C in methanol.

onide removal with catalytic CSA in refluxing methanol. Finally, hydrogenolysis over Pd/C afforded the fully deprotected disaccharides, whose anomeric stereochemistry was

again confirmed by determination of the ${}^{1}J_{\mathrm{CH}}$ coupling constants

In summary, a method for the stereocontrolled synthesis of both β -D-glycero-D-manno- and β -L-glycero-D-manno-heptopyranosides has been established. We anticipate that this work will open the way for the synthesis of most β -linked heptopyranosides, including those in the polysaccharide repeating unit illustrated in Figure 1. Furthermore, it has been established that the stereochemistry of substitution at the 6-position has little effect on the stereoselectivity of these 4,6-O-alkylidene acetal-controlled glycosidation reactions. This observation is most consistent with Bols' interpretation of the benzylidene acetal effect, namely, the locking of the C5-C6 bond in the tg conformation.

Acknowledgment. We thank the NIGMHS for financial support (GM 57335).

Supporting Information Available: Full experimental details and charcterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL050224S

- (13) (a) Johansson, R.; Samuelsson, B. J. Chem. Soc., Chem. Commun. 1984, 201. (b) Liptak, A.; Jodal, I.; Nasai, P. Carbohydr. Res. 1975, 44, 1. (c) Sakagami, M.; Hamana, H. Tetrahedron Lett. 2000, 41, 5547. (d) Jiang, L.; Chan, T.-K. Tetrahedron Lett. 1998, 39, 355. (e) Garegg, P. J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1993; p 53.
- (14) Leeuwenburgh, M. A.; Kulker, C.; Duynstee, H. I.; Overkleeft, H. S.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron* **1999**, *55*, 8253.
- (15) Dong, L.; Roosenberg, J. M., II; Miller, M. J. J. Am. Chem. Soc. **2002**, *124*, 15001.
- (16) Note: epimerization at C5 was also observed but was substantially eliminated by carrying out the reaction at low temperature.
- (17) (a) Nysted, L. N. U.S. Pat. 3,865,848, 1975. (b) Matsubara, S.; Sugihara, M.; Utimoto, K. *Synlett* **1998**, 313.
- (18) Petasis, N. A.; Bzowei, E. I. *J. Am. Chem. Soc.* **1990**, *112*, 6392. (19) (a) Cha, J. K.; Christ, W. J.; Kishi, Y. *Tetrahedron* **1984**, *40*, 2247. (b) Cha, J. K.; Kim, N.-S. *Chem. Rev.* **1995**, *95*, 1761.
 - (20) Gurjar, M. K.; Talukdar, A. Tetrahedron 2004, 60, 3267.
- (21) (a) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron. Lett.* **1982**, 23, 889. (b) Lergenmüller, M.; Nukada, T.; Kuramochi, K.; Dan, A.; Ogawa, T.; Ito, Y. *Eur. J. Org. Chem.* **1999**, 1367. (c) Mulzer, J.; Berger, M. *J. Org. Chem.* **2004**, 69, 891.
 - (22) Crich, D.; Smith, M.; Yao, Q.; Picione, J. Synthesis 2001, 323.
 - (23) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155.
 - (24) Bock, K.; Pedersen, C. J. Chem. Soc., Perkin Trans. 2 1974, 293.
 - (25) Crich, D.; Sun, S. Tetrahedron 1998, 54, 8321.

1398 Org. Lett., Vol. 7, No. 7, 2005